Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ya-Juan Zhao and Xin-Hua Li*

School of Chemistry and Materials Science,
Wenzhou Normal College, Zhejiang, Wenzhou
325027, People's Republic of China

Correspondence e-mail: lixinhua01@126.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.061$
$w R$ factor $=0.141$
Data-to-parameter ratio $=12.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-Nitrophenol-urea (1/1)

In the title compound, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{3} \cdot \mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$, 4-nitrophenol molecules are linked to urea molecules by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a network structure.

Comment

In the design of crystal structures, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Directional intermolecular interactions are the primary tools in achieving this goal and hydrogen bonding is currently the best among them (Zaworotko, 1997; Braga \& Grepioni, 2000).

(I)

The title compound, (I), forms a co-crystal (Fig. 1 and Table 1) in which 4-nitrophenol and urea molecules interact through multiple hydrogen bonds (Table 2) generating a three-dimensional network (Fig. 2).

Experimental

Urea ($0.12 \mathrm{~g}, 2 \mathrm{mmol}$) and 4-nitrophenol ($0.28 \mathrm{~g}, 2 \mathrm{mmol}$) were dissolved in dimethylformamide (10 ml). The reaction mixture was filtered. Colorless prism-shaped crystals separated from the filtrate after about a month.

Figure 1
The structure of (I) with the atom numbering, showing displacement ellipsoids at the 50% probability level.

Received 5 September 2005
Accepted 16 September 2005
Online 21 September 2005

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{3} \cdot \mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=199.17$
Triclinic, $P \overline{1}$
$a=3.7619$ (9) \AA
$b=10.230$ (2) A
$c=11.810$ (3) \AA
$\alpha=98.634(4)^{\circ}$
$\beta=92.415(5)^{\circ}$
$\gamma=99.326(4)^{\circ}$
$V=442.38(18) \AA^{3}$
$Z=2$
$D_{x}=1.495 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1561 reflections
$\theta=1.8-25.1^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, colorless
$0.23 \times 0.13 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART APEX areadetector diffractometer ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.98, T_{\text {max }}=0.99$
2362 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0564 P)^{2} \\
&+0.2445 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}
\end{aligned}
$$

1561 independent reflections
1234 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.013$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-4 \rightarrow 4$
$k=-12 \rightarrow 12$
$l=-10 \rightarrow 14$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.141$
$S=1.07$
1561 reflections
127 parameters
H -atom parameters constrained

Figure 2
View parallel to the a axis of (I), showing hydrogen bonds as dashed lines.

The presence of two peaks in the difference Fourier map in two suitable locations showed atoms N 2 and N 3 to be protonated, and the H atoms attached to N2 and N3 were included in the refinement in calculated positions in the riding-model approximation ($\mathrm{N}-\mathrm{H}=$ $0.86 \AA$), with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $0.82(\mathrm{O}-\mathrm{H})$ and $0.93 \AA(\mathrm{C}-\mathrm{H})$, and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support by Zhejiang Provincial Natural Science Foundation of China (grant No. Y404294), the Education Office of Zhejiang Province (No. 20040336), and the ' 151 ' Distinguished Person Foundation of Zhejiang Province.

References

Braga, D. \& Grepioni, F. (2000). Acc. Chem. Res. 33, 601-608.
Braga, D., Grepioni, F. \& Desiraju, G. R. (1998). Chem. Rev. 98, 1375-1386.
Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (1995). Angew Chem. Int. Ed. Engl. 34, 2311-2315.
Desiraju, G. R. (1997). Chem. Commun. pp. 1475-1476.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zaworotko, M. J. (1997). Nature (London), 386, 220-226.

